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Abstract. General formulae are found for misfit strains and their energy density in multilayer
solid composites. The effect of misfit strains on phase transformations (related to diffusional
mixing) in layered composites is theoretically described with the help of the above general
formulae. It is theoretically revealed here that misfit strains play a significant role in initiating
solid-state amorphizing transformations. The dependence of the minimal critical thickness (which
characterizes the amorphization processes) on misfit parameters in layered composites is found.

1. Introduction

Application of layered composite solids in micro- and nanoelectronics as well as in other
areas of high technology commonly imposes strict demands on stability of their structure and
properties. However, interphase boundaries as local structural imperfections (plane defects)
and sources of misfit strains are capable of causing instability and degradation of the desired—
from an applications viewpoint—properties of layered composites; see e.g. [1–8]. On the
other hand, there are technologies which are based on the effects of microstructural and phase
transformations at interphase boundaries in layered composites [9–15]. For instance, the
effect of solid-state amorphizing transformations occurring in multilayer coatings serves as the
basis for synthesis of amorphous metallic alloys (in particular, amorphous alloys with specific
chemical compositions that cannot be obtained with the help of other technological methods
of amorphous-alloy synthesis); see e.g. [9–13]. The significant role of interphase boundaries
in processes occurring in layered composite solids is of great interest in experimental and
theoretical studies of interphase boundaries and their contribution to the macroscopic properties
of such solids. In such studies, up to now, the most attention in theoretical studies has been paid
to the analysis of interphase boundaries in two-layer systems (mostly film/substrate systems),
these being the simplest representatives of layer composites [2–8].

The role of misfit strains (induced by interphase boundaries) in structural and phase
transformations in layered composites depends, in general, on many macroscopic factors (e.g.,
geometric dimensions of composites, temperature) as well as microscopic parameters which
describe structural and chemical peculiarities of composites, and often cannot be directly
identified by current experimental methods. As a corollary, at present, key micromechanisms
and specific features of the structural and phase transformations in layered composites have
not been unambiguously recognized in many cases.

The main aims of this paper are to calculate (in a general form) misfit strains and the strain
energy density in multilayered composites with coherent interphase boundaries (section 2)
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and to theoretically describe the role of misfit strains in phase transformations in initially two-
layer composites (section 3) with particular attention being paid to solid-state amorphizing
transformations (section 4). A general discussion of the theoretical results of this paper will
be given in section 5.

2. Misfit strains and energetic characteristics of multilayer composites

Let us consider a multilayered film deposited on a relatively thick substrate. LetN be the
number of layers in the film (figure 1), andH andhi (i = 1, . . . , N) be the substrate and
ith-layer thicknesses, respectively, which have arbitrary magnitudes. In this situation, the
total thickness of such a layered structured is equal toH +

∑N
i=1 hi , which is assumed to

be much smaller than the other linear dimensions of the system. Let the misfit strainfi be
a characteristic eigenstrain (with respect to the substrate, where the eigenstrain is assumed
to be equal to a zero value) for theith layer. For definiteness, we consider hereinafter only
the case withfi being a two-dimensional misfit strain which is uniform within theith layer.
In these circumstances, the nonzero eigenstrain componentsε0

xx(z) ≡ ε0
yy(z) = ε0(z) of the

misfit eigenstrain tensor̂ε0(z) can be written as follows:

ε0(z) =
N∑
i=1

fi {2(z− zi−1)−2(z− zi)} (1)

where2(z) is the Heaviside function, equal to 1, forz > 0, and 0, forz < 0; zi =
∑i

k=1 hk;
z0 ≡ 0.

Figure 1. A multilayer composite consisting of a substrate andN layers characterized by
eigenstrainsfi . The dependenceε0(z) is shown schematically on the right-hand side of the figure.

Let us assume that the outer surfaces of the multilayer composite (figure 1) are free of any
external loading. The elastic properties of the substrate and layers are supposed to be identical.

Using the theory of eigenstrains [16], we can write the compatibility equation for the total
strain tensor̂εt = ε̂ + ε̂0 as follows:

εpkiεqlj ∇k ∇l ε̂tij = 0 (2)

whereε̂ is the elastic strain tensor andεpki is the permutation tensor. In the case of a planar
stressed state which is realized in the model situation discussed, both the total and elastic
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strains depend on thez-coordinate only. Therefore, equation (2) can be rewritten as

∂2

∂z2
(εij + ε0

ij ) = 0. (3)

Equation (3) has the following solution:

εij (z) = −ε0
ij (z) +Aij +Bij z (4)

whereAij andBij are constants. From the structure of the tensorε̂0, it is entailed that the
nonvanishing components ofε̂ areεxx(z) = εyy(z) = ε(z), εzz(z) = −2νε(z), whereν is the
Poisson ratio,Aij = A, andBij = B.

The constantsA andB can be found from the conditions that the average elastic stresses
〈σij 〉 and the average momenta〈zσij 〉 are equal to zero [6]. These conditions result in the
following equations:

〈ε〉 = 1

d

∫ zN

−H
ε(z) dz = −〈ε0〉 +A +B〈z〉 = 0 (5)

〈zε〉 = 1

d

∫ zN

−H
zε(z) dz = −〈zε0〉 +A〈z〉 +B〈z2〉 = 0 (6)

from which the constants are obtained as

A = 〈ε0〉 − 〈zε
0〉 − 〈z〉〈ε0〉
〈z2〉 − 〈z〉2 〈z〉 (7)

B = 〈zε
0〉 − 〈z〉〈ε0〉
〈z2〉 − 〈z〉2 . (8)

Introducing (7) and (8) into (4), one finds the following expression for the elastic strain
ε(z):

ε(z) = −ε0(z) + 〈ε0〉 + 〈zε
0〉 − 〈z〉〈ε0〉
〈z2〉 − 〈z〉2 (z− 〈z〉). (9)

After some algebra, we have

〈ε0〉 = 1

d

∫ zN

−H
ε0(z) dz = 1

d

N∑
i=1

fi

∫ zi

zi−1

dz = 1

d

N∑
i=1

fihi (10)

〈zε0〉 = 1

d

∫ zN

−H
zε0(z) dz = 1

d

N∑
i=1

fi

∫ zi

zi−1

z dz = 1

2d

N∑
i=1

fihi(zi + zi−1) (11)

〈z〉 = 1

d

∫ zN

−H
z dz = z2

N −H 2

2d
= zN −H

2
(12)

〈z2〉 = 1

d

∫ zN

−H
z2 dz = z3

N +H 3

3d
. (13)

Introducing (1) and (10)–(13) into (9), we obtain the elastic strain distribution in the form:

ε(z) =
N∑
i=1

fi

{
2(z− zi)−2(z− zi−1) +

hi

d3

[
d2 + 3(H − zN + 2z)9i

]}
(14)

where9i = H − zN + zi + zi−1.
To illustrate the result found, let us consider two simple limiting cases.
First, let us discuss the case withfi ≡ f andhi ≡ h—that is, the case of a thin single-layer

film specified by both the thicknessh′ = Nh and the misfit eigenstrainf , and deposited on a
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thick substrate with the thicknessH . In this case, our general formula (14) is reduced to the
following expression:

ε(z) = f
{
−2(z) +

h′

d
+

3h′H(H − h′)
d3

+
6h′H
d3

z

}
(15)

which is well known in the theory of heteroepitaxial systems [6].
Second, let us consider the case withhi ≡ h andfi ≡ f , if i = 1, 3, . . . , N − 1, and

fi ≡ 0, if i = 2, 4, . . . , N , whereN is an even number. This case corresponds to a superlattice
deposited on a thick substrate. In the case discussed, the general expression (14) is transformed
into the formula

ε(z) = f
{2(N−1)∑

n=1

(−1)n2[z− (n− 1)h]

+ (N − 1)
h

d

[
1 +

3

d2
[H + h(N − 3)](H −Nh + 2z)

]}
. (16)

The strain energy of the system (per unit surface square) can be written as

W = 2G
1 + ν

1− ν
∫ zN

−H
ε2(z) dz (17)

whereG is the shear modulus. Substituting (14) into (17), after some cumbersome calculations,
we find the following result:

W = 2G
1 + ν

1− ν
∫ zN

−H

{ N∑
i=1

f 2
i

[
2(z− zi−1)−2(z− zi)

]
+

2

d3

N∑
i,j=1

fifjhj
[
2(z− zi)−2(z− zi−1)

] [
d2 + 39j(H − zN + 2z)

]
+

1

d6

N∑
i,j=1

fifjhihj

× [
d4 + 3d2(9i +9j)(H − zN + 2z) + 99i9j (H − zN + 2z)2

] }
dz

= 2G
1 + ν

1− ν

×
{ N∑
i=1

f 2
i

∫ zi

zi−1

dz− 2

d3

N∑
i,j=1

fifjhj

∫ zi

zi−1

[
d2 + 39j(H − zN + 2z)

]
dz

+
1

d6

N∑
i,j=1

fifjhihj

×
∫ zN

−H

[
d4 + 3d2(9i +9j)(H − zN + 2z) + 99i9j (H − zN + 2z)2

]
dz

}
= 2G

1 + ν

1− ν
{ N∑
i=1

f 2
i hi −

1

d3

N∑
i,j=1

fifjhihj (d
2 + 39i9j )

}
. (18)

In the first limiting case withfi ≡ f , hi ≡ h, andN = 1 (for simplicity), formula (18)
gives

W = 2G
1 + ν

1− ν f
2h

(
1− hd

2 + 3H 2

d3

)
. (19)
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From (19), forh� H ≈ d, we have the well known expression [5, 6] for the misfit energy in
the simplest case of a thin film on a semi-infinite substrate:

W(h� H ≈ d) ≈ 2G
1 + ν

1− ν f
2h. (20)

As a result, we have obtained a general expression (18) which can be effectively used for
analysis of various models of misfitting multilayer composites. The above approach can also
be directly generalized to the situation with different elastic moduli of the layer and substrate
materials.

3. Misfit strains and phase transformations at interphase boundaries in layered
composites

Let us consider with the help of the results obtained in the previous section a phase trans-
formation occurring at the interphase boundary in a two-layer composite consisting of layers
α andβ. The phase transformation causes the pre-existing two-layer system to be transformed
into a three-layer system with an intermediate layer (new phase)α–β (figure 2). Such phase
transformations commonly result from diffusional mixing of atoms of the phasesα andβ; see
e.g. [9–15]. In the context of our paper, we will examine the new three-layer composite as a
misfitting system (characterized by two misfit parameters) with special attention being paid
to the role of misfit strains in initiating the intermediate-layer formation—that is, the phase
transformation at the interphase boundary in the pre-existing two-layer composite.

Figure 2. A three-layer composite consisting of ‘edge’ layersα andβ and an intermediate layer
(new phase)α–β. The pre-existing interphase boundaryα/β is shown as a dashed line.

Let the thickness of the new three-layer system bed = H +h, in which case the new phase
α–β forms an intermediate layer with the thicknessa—that is, the layer between the initial
film α and the substrateβ characterized by the valuesh − a/2 andH − a/2, respectively,
of the thickness (figure 2). Also, let us suppose that the eigenstrains of the dilatation misfit
aref andg respectively in the layersα andα–β relative to the layerβ characterized by the
eigenstrainε0 ≡ 0.

The strain energy density of the three-layer composite (figure 2) is given by formula (18),
which can be rewritten in the situation discussed as follows:

Wc
2 = Wc

1 + 2G
1 + ν

1− ν f
2a

{
φ0 + φ1

a

d
+ φ2

(
a

d

)2

+ φ3

(
a

d

)3}
(21)
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where

φ0 = −1

2
+

(
1− 2

g

f

)
h

d

(
1 + 3

H(H − h)
d2

)
+
g2

f 2

φ1 = −1

4

(
1 + 3

H 2 + h2 − 4Hh

d2

)
+
g

f

(
1− g2

f 2

)(
1 + 3

(H − h)2
d2

)
φ2 = −3

4

(
1− 2

g2

f 2

)
H − h
d

φ3 = − 3

16

andWc
1 is the strain energy density of the pre-existing composite consisting of layersα andβ

only (see formula (19)).
Formula (21) is indicative of the fact that the strain energy densityWc

2 depends, generally
speaking, in a nonlinear way on the thicknessa of the layerα–β as well as on the other
parametersh, H , f andg of the three-layer composite. At the same time, in the limiting
situation with an infinitely thick substrate (H, d →∞), the dependence of1Wc = Wc

2 −Wc
1

ona is linear:

1Wc ≈ 2G
1 + ν

1− ν f
2a

(
g2

f 2
− 1

2

)
.

In this situation,1Wc does not depend on the film thicknessh and, as a corollary, the
intermediate-layer formation is energetically favourable (1Wc < 0) or unfavourable (1Wc >

0) depending on the ratiog2/f 2. More precisely, the formation in question is energetically
favourable (1Wc < 0) atg2/f 2 < 1/2—that is, at|g| < |f |/√2.

Now let us turn to the analysis of the situation with layersα andβ having the same
thickness—that is,H = h and d = 2h. In this situation,φ0 = −g/f + g2/f 2, φ1 =
1/8 +g/f − g2/f 2, φ2 = 0,φ3 = −3/16, and, as a corollary,

Wc
2 = Wc

1 + 2G
1 + ν

1− ν f
2a

{
− g
f

+
g2

f 2
+

(
1

8
+
g

f
− g2

f 2

)
a

d
− 3

16

(
a

d

)3}
. (22)

Here

Wc
1 =

G

4

1 + ν

1− ν f
2h.

Let us examine with the help of (22) the initial stage of the intermediate-layer formation. In
doing so, we focus our attention on the situations withf > g > 0 or−f < −g < 0, because
the formation of the intermediate layer in other situations leads to the increase of the misfitting
of a layered composite and, therefore, is definitely unfavourable from an energetic viewpoint.
The intermediate layer at the initial stage of its formation is characterized by the thickness
a � d. This allows us to neglect the term proportional to(a/d)3 on the r. h. s. of formula
(22). In doing so, from the reduced version of formula (22) (with the aforesaid term omitted)
it is entailed that the intermediate-layer formation is energetically favourable (1Wc < 0), if
h > hc, where the critical thickness

hc ≈ a

2

(
1 +

f 2

8g(f − g)
)
. (23)

Formula (23), in particular, is indicative of the fact that there is a minimal critical thickness

hc,min ≈ 3

4
a (24)
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which corresponds to the situation withg = f/2. The critical thickness atg→ 0 is

hc ≈ a

2

(
1 +

f

8g

)
and it decreases with increasingg and increases with increasingf . Wheng→ f ,

hc ≈ a

2

(
1 +

f

8(1− g/f )
)

and it increases with increasingg and decreases with increasingf . The dependence of1Wc

andhc onf andg is shown schematically in figure 3.

Figure 3. Dependences of1Wc andhc onf andg (shown schematically).

Let us estimate numerically the value ofhc in the situation with nucleation of an
intermediate layer—that is, the situation with the layer (as the layer of a new phase)
characterized by the minimal thicknessamin. (The new phase should consist of, at least,
several atomic layers, in which caseamin is commonly of the order of 1 nm.) Let the misfit
parameter in the pre-existing two-layer system bef = 0.01. In these circumstances, for values
of g = 0.008, 0.009 and 0.0099, from (24) we find the critical thicknesseshc ≈ amin, 1.2amin,
500amin, respectively.

In our consideration, we have focused on the effect of misfit strains on phase trans-
formations in layered composites. At the same time, in general, other factors also influence
such transformations. First of all, the differenceWa−c between the free-energy (or another
thermodynamic potential) densities of the pre-existing phases (α andβ) and a new phase (α–
β) usually plays an important role in phase transformations in layered composites. In these
circumstances, any comparison of the quantitative estimates (e.g., values ofhc andhc,min, the
dependence of1Wc andhc onf andg) obtained in this section using experimental data as well
as other theoretical estimates seems to be unreasonable, because many other factors should
be taken into account. A detailed labour-consuming analysis of the contribution ofWa−c to
the energetic characteristics of intermediate-layer formation (figure 2), as well as other factors
(different from misfit strains) affecting phase transformations of all types in layered composite
solids, is beyond the scope of this paper. In the next section, we examine theoretically the
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only type of such transformations—namely the solid-state amorphizing transformations in
layered composites, taking into account the misfit strain energy density and other energetic
characteristics of the new phase—that are capable of influencing the amorphization processes.

4. Misfit strains and solid-state amorphization in layered composites

Solid-state amorphizing transformations occur in multilayer composite solids consisting of
alternate layers, say,α andβ, of elemental metals; see e.g. [9–13]. In these circumstances,
layers of the new amorphous alloyed phaseα–β nucleate atα/β interfaces due to diffusional
mixing of atomsα and β. Recently, it has been experimentally revealed that solid-state
amorphization does not occur in Ni/Ti multilayer composites having the crystalline layer
thickness in a composite below some critical thicknesshamc (which is several nanometres)
[13]. We think that this experimental fact gives evidence of a strict relationship between misfit
strains (whose contribution to the energy of a composite is dependent on the layer thickness;
see sections 2 and 3) and the amorphization processes. More precisely, in the context of our
previous consideration of the intermediate-layer formation in a filmα/substrateβ system, the
amorphization occurs as a process with relaxation of misfit strains contributing to its driving
force. In this section, we will theoretically examine with the help of results obtained in previous
sections the effect of misfit strains on the solid-state amorphization in layered composites. In
doing so, we also take into account both the energy density of crystal/glass interfaces resulting
from the amorphization and the differenceWa−c between the free-energy densities of the (new)
amorphous and (pre-existing) crystalline phases.

Let us consider the formation of an intermediate amorphous layerα–β in an initially two-
layer system consisting of crystalline layersα andβ (figure 2). The amorphous-layer formation
is accompanied, in particular, by the occurrence of two crystal/glass interfaces. Following the
model of [17] of crystal/glass interfaces, the total energy densityEtoti of a crystal/glass interface
can be represented as the sum of the two basic terms,Edili andEdisi , which are related to the
dilatation misfit (originating from the difference between the mean interatomic distance in
the amorphous phase and the crystal lattice parameters of the adjacent crystalline phases) and
disorder-induced distortions (originating from distortions of the adjacent amorphous phase),
respectively. In the context of our paper, in the theoretical examination of the amorphous-layer
formation in a pre-existing two-layer crystalline composite, we will operate with dilatation
misfit strains induced by crystal/glass interfaces and their energy densityEdili by means of
methods developed in previous sections, in which case it is identified as the energy density
Wc

2 . At the same time, the energy densityEdisi will be taken into account as a parameter
contributing to the energetic criterion for the amorphous-layer formation (see below).

Let us consider the amorphous layer at the initial stage of its nucleation in a two-layer
composite. It is characterized by the minimal thicknessamin, the dilatation misfit energy
densityWc

2 , and the energy densityEam(amin) (per unit area) which is the sum of its proper
free-energy densityWa−camin and the energy density 2Edisi of two (new) crystal/glass interfaces
(Eam(amin) = Wa−camin + 2Edisi ). The energy densityEam(amin) is included in the energetic
criterion for amorphous-layer formation, which is as follows:

1Wc +Eam(amin) < 0. (25)

With criterion (25) taken into account, we find after some analysis the following formula
for the critical thicknesshamc :

hamc ≈
a

2(1− E)
(

1 +
f 2

8g(f − g)
)
= hcrc

1− E (26)
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where

E = Eam(1− ν)
2G(1 + ν)ag(f − g) < 1 (27)

andhc is given by formula (23). In general,hamc can take widely varying values, depending on
Eam. In particular, the amorphization does not occur in composites with high values ofEam
(and, therefore, high values ofhamc ).

Let us discuss the effect of the termsWa−camin andEdili (which are treated here as
parameters) on the amorphization. The traditional viewpoint on the solid-state amorphization
in layered composites, which does not take into account misfit strains, is that the driving force
for the amorphization is associated with a negativeWa−c [9]. Within the framework of these
representations, the amorphization occurs ifWa−c < 0, and does not occur ifWa−c > 0.
However, recently, amorphization has been experimentally observed in immiscible Y/Mo
multilayer composites characterized byWa−c > 0 [11]. This is indicative of the crucial
effect of interfaces on the amorphization. In the paper [11], this effect was analysed by the
methods of thermodynamics, operating with the fraction of interfacial atoms as the key factor.
However, the approach of [11] does not allow one to explain the experimentally revealed
[13] existence of the minimal critical thicknesshamc for the amorphization in Ni/Ti multilayer
composites. As a corollary, in the context of the theoretical results obtained here, we think that
misfit strains play a very important role in the amorphization processes and should definitely
be taken into account in any description of the processes in question.

5. Concluding remarks

Here we have calculated in a general form both misfit strains and their energy density in
multilayer solid composites. The results of these calculations can be effectively used in
examinations of the structural stability and the effect of misfit strains on the macroscopic
properties of layered composites. Thus, a general formula (18) for the misfit energy density
has been applied in this paper to the analysis of the role of misfit strains in initiating phase
transformations in layered composites, which are related to diffusional mixing in the vicinity
of interphase boundaries. This role has been revealed to be important, with misfit strains
crucially influencing the formation of new phases in layered composites.

Solid-state amorphizing transformations in layered composites have been theoretically
examined here as phase transformations affected by misfit strains. It has been found that
there is a minimal critical thicknesshamc which characterizes the solid-state amorphization
in layered composites: composites consisting of layers with thicknesses whose values are
above (or below, respectively)hamc , are amorphized (or are not amorphized, respectively).
The experimental data [11] on the crucial role of interfaces in the amorphization processes
in layered composites and the experimental data [13] on the existence of the minimal critical
thicknesshamc in Ni/Ti multilayer composites are in agreement with the theoretical results
obtained in this paper. These results, indicating the special role of interphase boundaries
(plane defects) in amorphization processes in layered composites, supplement the theoretical
representations [18–21] of the important contribution of defects to solid-state amorphization
processes in crystals.
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